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a b s t r a c t

This paper builds up a pattern recognition system to detect anomalies in JPEG images, especially

steganographic content. The system consists of feature generation, feature ranking and selection,

feature extraction, and pattern classification. These processes tend to capture image characteristics,

reduce the problem dimensionality, eliminate the noise inferences between features, and further

improve classification accuracies on clean and steganography JPEG images. Based on the discussion and

analysis of six popular JPEG steganography methods, the entire recognition system results in higher

classification accuracies between clean and steganography classes compared to merely using individual

feature subset for JPEG steganography detection. The strength of feature combination and preproces-

sing has been integrated even when a small amount of information is embedded. The work

demonstrated in this paper is extensible and can be improved by integrating various new and current

techniques.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Due to an enormous need on digital data communication,
information transmission, and storage, information security in
digital files is a serious issue [1]. Encryption has been developed
to keep the confidentiality of messages by making them unread-
able [2]. Digital steganography has been one of the main tools for
protecting data. A cover signal chosen to be a cover media
imperceptibly hides secret information with the use of stegano-
graphy methods [3,4]. The secret message is known as stegano-
graphic content, as well as stego in short. Signals containing the
concealed information are stored and/or transmitted through
public channels preventing hidden data from being observed.
On the other hand, Cyber crime may use steganography as a tool
to conceal potential evidence inside of another file, making
evidence virtually unobtainable [1,5]. This has been an issue since
evidences first indicated steganography is used for covert com-
munication [6–8]. Steganalysis against steganography tends to
discover whether a given signal potentially contains a secret,
determines possible steganography method(s) utilized, and/or
further extracts pertinent data [9].
ll rights reserved.

: þ853 28838314.
Among all digital files, numerous devices generate JPEG images
due to the capability of compression and compatibility. A large
number of JPEG steganography methods are also available online
for free usage [10]. A diverse of JPEG steganography methods
applying different embedding techniques results in various changes
to natural image characteristics [11]. This has spawned significant
research in the area of JPEG image steganalysis. For image stegano-
graphy detection, prior arts have researched and developed image
features for distinguishing clean and stego JPEG images [12–17].
However, as more features being generated, the dimensionality of
problem space increases. Although some have tended to solve this
problem within the stage of feature generation, the resulting
feature information may contain inferences or correlation within,
which may degrade the classification performance.

A typical pattern recognition (PR) system includes several
components: feature generation, feature ranking and selection,
feature extraction, as well as classification [18–20]. There have been
many pattern recognition applications developed in various fields,
such as bioinformatics and signal detection/prediction systems. This
paper constructs a pattern recognition system for JPEG steganogra-
phy detection. The first part of the recognition system is to develop a
set of image features capable of distinguishing clean images from
stego images. Utilizing a combination of existing features is also a
way to capture the strength from various techniques. For clustering
steganography images of different embedding methods with clean
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images, a subset of features may be selected differently in order to
have better separability. The criterion for feature selection based on
a separability ranking measure. The selected features are further
extracted/transformed into a set of principle components which are
mutually exclusive. Then a neural network classifier is utilized for
classification.

Clean JPEG images along with six JPEG stego image sets are
analyzed for demonstration, including F5 [21], JPEG-JSteg v1 [22],
JPEG-JSteg v4 [23], Model-based v1.2 [24], Outguess v0.2 [25],
and Steghide v0.5.1 [26]. The results show that the proposed
system improves the separability between clean and each of the
stego image set with three embedding file sizes and three stego
methods. With the entire feature combination and preprocessing
system, the procedures utilizing current feature generation meth-
ods not only reduce the cost of developing new algorithms but
also increase the classification accuracies (CA) with smaller
problem dimensionality. The system is extensible and can be
further improved with the integration of newly developed and
currently existing techniques in each pattern recognition stage.

The paper is organized as follows. An overview of JPEG
steganography and detection is given in Section 2. Section 3
discusses and analyzes six popular JPEG steganography methods:
F5, JPEG-JSteg v1, JPEG-JSteg v4, Model-based v1.2, Outguess v0.2,
and Steghide v0.5.1. Section 4 presents the pattern recognition
system for JPEG steganography detection. Section 5 describes,
demonstrates, and compares the experimental results of the
presented system with three benchmark methods [13,15,16],
ensuing the conclusion and discussion of possible future work
in Section 6.
2. Related work

This section briefly describes steganography on JPEG images
and then provides a short survey on existing techniques used for
JPEG image steganography detection.

2.1. JPEG steganography

JPEG, developed in 1992 by the Joint Photographic Experts
Group, is a standard format for lossy compression based on
discrete cosine transforms (DCT) [27]. The JPEG image compres-
sion format inherits the characteristics from DCT in 8�8 image
blocks. One of the characteristics of applying DCTs yields the
resulting coefficients in frequency order from low to high as a
zigzag scan, as shown in Fig. 1 with an 8�8 block. The JPEG
Fig. 1. An 8�8 JPEG coefficient block: (a) coeffic
coefficient locations in Fig. 1(b) are specified as the arrow flows in
Fig. 1(a). The coefficient at location 1 in Fig. 1(b) is the DC
coefficient, while the others are called AC coefficients. The energy
after the transforms concentrates on lower frequency coefficients,
resulting in larger coefficient values comparing to those located in
the higher frequency area.

JPEG steganography usually applies various embedding tech-
niques on JPEG coefficients. The embedding algorithms for hiding
secret alter the coefficients in a way that an image is impercept-
ibly changed. JPEG-JSteg, the first stego method on JPEG images,
was introduced by Upham [22]. The stego message is embedded
in the least significant bits of JPEG coefficients sequentially or
randomly [23]. This results in changing the characteristics of
histograms (or the first order statistics ) of coefficient values and
leads to a simple observation of alteration.

More embedding techniques intend to maintain the natural
histogram of the coefficients. F5 stego method [21] was devel-
oped as a challenge to the steganalysis community. It makes use
of matrix embedding techniques. In the F5 algorithm, k message
bits are XORed with n hashed coefficients to determine if absolute
value of coefficients should be decremented or keep unchanged.
Outguess stego method [25] modifies the LSB of the DCT coeffi-
cients by statistically checking the original image. It manipulates
nearby DCT blocks to maintain a uniform-like distribution of the
coefficient histogram. Based on statistical modeling and informa-
tion theory, Model-based stego method [24] tends to avoid first
order statistical attacks while achieving a higher stego message
capacity than previous methods. Steghide [26] also has the aim of
resisting first order statistical tests in addition to the compression
and encryption of stego data. Note that Outguess v0.2 and
Steghide v0.5.1 do not embed stego data if a cover does not have
enough capacity while other methods hide stego message to its
maximum capability of a cover. Analysis of these stego methods
will be shown in Section 3.
2.2. JPEG steganography detection

Steganalysis tools, based on functionalities, are categorized
into targeted steganalysis and blind steganalysis [11,28,29]. The
former type focuses on a certain steganography tool while the
latter one is independent to the methods being used. To solve
the image steganalysis problem, there are mainly two approaches.
One is visual analysis which examines the images perceptually.
The other approach, statistical analysis, analyzes the images by
applying statistical tests in order to find anomalies within images,
ient zigzagging; and (b) coefficient locations.
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such as chi-square tests, blockiness analysis, pixel comparisons,
etc [13,30]. In addition, commercial tools have been developed
for steganalysis purpose, such as Stego Suite [31], StegAlyzer
[32], etc.

For JPEG steganography detection, the characteristics of JPEG
coefficients described in the previous section are important. Due
to a large amount of sources generating JPEG images and online
freeware generating stego files with JPEG images, it is necessary
to properly detect various JPEG stego methods. In current JPEG
steganalysis methods [13–17,33], generating image features plays
an important role for determining if an image contains stego
messages or not. Classifiers such as support vector machines
are then applied to the features to make detection decision.
The presence of noises in features increases the difficulty of a
detection system for detecting stego messages embedded by
various methods [34]. To address this problem while achieving
higher classification accuracies, a specific pattern recognition
system for steganalysis will be proposed by combining various
feature sets including both existing and new ones. This ensures
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Fig. 2. An averaged histogram of coefficient values from 1000 JPEG
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Fig. 3. Zoomed-in averaged histograms of coefficient values from 1000 JPEG images

(d) Model-based v1.2; (e) Outguess v0.2; and (f) Steghide v0.5.1.
the system making full use of all developed features. Moreover,
the proposed system has the ability to update itself by including
newly generated features.
3. Analysis on JPEG steganography methods

For a clean JPEG image, the histogram of JPEG AC coefficient
values approximately appear to have a Laplacian distribution
with zero mean [35,36]. Fig. 2(a) is an averaged histogram on
JPEG AC coefficient values from a thousand clean JPEG images
randomly selected from [37]. Fig. 2(b) focuses on coefficient
values from �15 to 15. Apparently, the average number of the
coefficient value 0 is much higher than other coefficient values.
This property leads to JPEG compression.

Fig. 3 shows averaged histograms of AC coefficient values from
a thousand randomly selected JPEG images from [37] incorpo-
rated with various JPEG stego tools with a stego message file of
size 1.04 KB in a zoomed-in scale as the same as in Fig. 2(b). As
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images: (a) averaged histogram and (b) zoomed-in histogram.
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with various steganography tools: (a) F5; (b) JPEG-JSteg v1; (c) JPEG-JSteg v4;
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can be seen, the changes made on coefficient value histograms of
both JPEG-JSteg v1 and JPEG-JSteg v4 are obvious. JPEG stego
methods as F5, Model-based v1.2, Outguess v0.2, and Steghide
v0.5.1 shown in Fig. 3(a), (d), (e), and (f) intend to manipulate the
coefficients in a way that minimizes the impact of the first-order
statistics of images. This increases the difficulty of statics analysis
in steganalysis. In each of the following experimental demonstra-
tion, seven stego message files with different sizes are utilized,
including size approximations of 0.1 KB, 0.2 KB, 0.3 KB, 0.4 KB,
0.5 KB, 1.0 KB, and 1.5 KB.

3.1. Root mean squared error (RMSE) measurements

Eq. (1) is the formula of root mean squared error in two
dimensions. Given two matrices X and Y of the same size M�N,
the RMSE between the two is calculated as

RMSEðX,YÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
m ¼ 1

XN

n ¼ 1

ðX½m,n��Y½m,n�Þ2

vuut , ð1Þ

where m¼ 1;2, . . . ,M and n¼ 1;2, . . . ,N.

3.1.1. RMSE in spatial domain

This analysis computes the averaged RMSE between 1000
randomly selected clean and stego images of the six stego
methods described in the previous section along with seven stego
message file sizes in the spatial domain.

As can be seen in Fig. 4(a), JPEG-JSteg v4 is an exception among
all, resulting in higher error measurements. Fig. 4(b) zooms in the
five stego methods tangled at the bottom in Fig. 4(a). Note that
Outguess v0.2 and Steghide v0.5.1 do not embed stego data if a
cover does not have enough capacity. In other words, not all 1000
images in random selection are feasible for analysis using Out-
guess v0.2 and Steghide v0.5.1. This results in [38] by considering
stego message as noises.

3.1.2. RMSE in JPEG domain

Fig. 5 shows the analysis of the averaged RMSE between 1000
randomly selected clean and stego images of the six stego
methods described in the previous section along with seven stego
message file sizes in the JPEG domain.
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Fig. 4. An averaged RMSE of pixel values between 1000 clean and stego JPEG images
Note that Outguess v0.2 and Steghide v0.5.1 have lower RMSE
when stego message file size is larger than 1 KB since there are
more cover images in the 1000 images not feasible for embedding
due to the capacity of each image. For stego message file size less
than 0.5 KB, F5 has the lowest RMSE while JPEG-JSteg v1 has the
highest RMSE most of the times.
3.2. Number of changes on JPEG coefficient locations

This analysis demonstrates how coefficient locations affect the
number of changes on JPEG coefficient values between clean and
stego images. Referring to Fig. 1, Fig. 6 shows the averaged number
of changes on each coefficient location denoted from 1 to 64 with
the six stego methods along with 1000 randomly selected images.
Please note that all the six images in Fig. 6 have the same scale.
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As can be seen in Fig. 6(a) and (d), F5 and Model-based v1.2 does
not touch DC coefficients located at coefficient location 1. With a
feasible set of 1000 images, Steghide v0.5.1 has the minimum effect
on manipulating the coefficients at each location. In addition,
except for the DC coefficients and the first few AC coefficients,
the peaks and the valleys are located at the same location indices,
such as 9, 13, 19, 25 are peaks and 7, 11, 16, 22, 29 are valleys, for
every stego method. Note that the valleys are the location indices
close to the edges of the coefficient block in Fig. 1(b) and the indices
of the peaks have more concentration to the diagonal locations.

3.3. Number of changes on JPEG coefficient values

With 1000 clean and stego JPEG images, this analysis illustrates
the averaged number of changes on clean JPEG coefficient values
between �25 and 25. See Fig. 7. For instance, for a clean coefficient
value �20 in a certain image, how many of them will be changed in
stego image due to the stego method used. Among the six stego
methods in Fig. 7, it can be seen that only F5 and JPEG-JSteg v4 alter
the coefficient value 0. Especially in F5, the number of value 0
increases after the embedding process as shown in Fig. 7(a). JPEG-
JSteg v1 and Outguess v0.2 do not touch coefficient value 1 as well.
These methods change coefficients within the smaller absolute
values, such as 2, 3, 4. This results in [15] considering the absolute
threshold value as 4 in both [15] and [33].
4. Steganography detection system

A steganography detection system developed in [34] has
shown that feature generation along with preprocessing for
steganography detection is vital. This section designs a pattern
recognition system with a set of features combining three feature
subsets, feature ranking and selection, as well as classification for
JPEG steganography detection.

4.1. Feature generation

For image steganalysis problem, in order to find out if there are
anomalies in an image, one way is to approximate the character-
istics of an image, such as image pixel values or coefficient values
in transform domains. Fig. 8 shows a generic procedure of the
technique.

Prior arts have developed assorted feature sets, such as
[13,15,38]. Each feature set provides different separable strength
on clean and stego images from various JPEG stego methods. It,
however, only offers a detection system the limited ability to
detect a small set of image steganography algorithms. To over-
come this problem, the feature generation stage in the presented
system combines three feature subsets listed as follows, resulting
in a 370 dimensional feature vector for each image.
1.
 Fridrich generates a set of features 23 features based on image
calibration [13].
2.
 Shi et al. develops a set of 324 features viewing the differences
in the JPEG 2-D array with Markov random process [15].
3.
 Chen et al. exploits the concept of considering stego message
as noises, estimating image pixel values by alpha-trimmed
Fig. 8. A generic image estimation feature generation method.
mean filtering techniques along with statistical measures as in
[13]. A total of 23 features is generated [38].

This combined feature set offers the presented system the
stronger capability of detecting a larger number of JPEG embedding
methods that embed within the header, DCT coefficients and the
footer of JPEG images. Moreover, this feature set can be expanded
by incorporating current and/or new image feature subsets.
4.2. Feature multivariate analysis

4.2.1. Feature ranking and selection

Among raw features, some of them may have the ability to
separate the input data into different classes, others may be not.
Additionally, a specific feature may show different separability
strength for various categories. The purpose of the feature selec-
tion is to make sure the data to be properly classified [39].

The equal covariance discriminant ratio (ECDR), also known as
the Fisher’s discriminant ratio, is an efficient approach for
dimensionality reduction of the data space in statistical pattern
recognition [40]. As an improved version of the ECDR, a general-
ized equal covariance discriminant ratio (GECDR) is used as the
ranking tool in the proposed detection system. It can efficiently
quantify the reparability of individual features utilizing trimming
outliers [34]. The features are ranked based on the class separ-
ability by measuring the class discrimination of the individual
features. For a one-dimensional, two-class problem, the GECDR is
defined by

FDRaij
¼
ðmai
�maj
Þ
2

s2
ai
þs2

aj

, ð2Þ

where mai
and maj

are the alpha-trimmed means [41], and s2
ai

and
s2
aj

are the deviations corresponding to the individual feature
under investigation for the two classes.

Using the GECDR in Eq. (2) leads to an increase in differences
between the means while less variance within two classes
respectively, obtaining a higher ranking value. In other words,
the high-ranked features have higher possibilities to distinguish
between classes. Based on the ranking, a certain number of top-
ranked features are selected in this preprocessing stage. The
meaning is that these selected features are expected to have
higher class separability while the features not selected have little
ability to distinguish between classes.
4.2.2. Feature extraction

The goal of feature extraction is to avoid information redun-
dancies. This stage consists of mapping the current space onto a
new space which is more suitable for the given task. The method
exploited in the system is known as principle component analysis
(PCA) [42], also known as the Karhunen–Loeve Transform (KLT).

Using PCA for feature extraction is to represent a new space in
a way to extract mutually uncorrelated features from the current
space. To achieve the minimum MSE, the eigenvalues and eigen-
vectors of the correlation matrix derived from the selected raw
features are first calculated. The MSE is minimized if the eigen-
vectors corresponding to a certain number of largest eigenvalues
are chosen. Therefore, in this stage, the extracted features are to
separate the class potentially since the principle components are
uncorrelated but keep all of the information from the selected
raw features.
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4.3. Classification and validation

4.3.1. Data standardization

Standardization allows for the centroid of the data to be
moved to the origin and stretched or compressed according to
the individual variances. Without preprocessing, a feature with a
larger value can dominate the input effect and influence the
model accuracy of neural network classifiers, fuzzy learning
classifiers, or others. This, however, does not necessarily reflect
the individual features respective significance in the design of the
classifier model. In this stage, an alpha-trimmed mean normal-
ization technique is used. Expanding from zero-mean normal-
ization, the mean and standard deviation are calculated with
alpha-trimmed mean. Using alpha-trimmed mean with the stan-
dardization allows the removal of outliers without additional
outlier processing [34].
Table 1
Classification accuracy (%) using the PR system for F5.

Features File size

(KB)

Fridrich [13]

(%)

Shi [15]

(%)

Chen [38]

(%)

Combination

(%)

5 0.2 52.5 47.3 47.4 57.2

0.3 49.9 45.5 46.3 43.1

1.0 51.8 55.2 51.2 55.2

10 0.2 46.7 38.2 45.3 48.8

0.3 54.6 51.4 50.6 55.6

1.0 83.6 56.4 75.7 80.5

15 0.2 51.6 40.5 49.8 44.0

0.3 73.6 43.5 59.3 61.3

1.0 88.5 64.8 87.3 80.5

20 0.2 52.4 47.2 48.6 52.2

0.3 64.8 48.6 59.9 62.5

1.0 96.5 68.0 86.2 91.6
4.3.2. Neural network classifier

A neural network classifier is utilized here for nonlinear
classification [43,44], as shown in Fig. 9.

The input of the trained neural network classifier are the
standardized feature vector f̂ of length q. The output y is the
classification result indicating which class the input f̂ belongs to.
For each node in the first layer network, Gaussian kernels fi with
centers and spreads are applied. A weighted linear mapping in the
second layer makes the classification decision with a threshold b.
The model equation is defined in Eq. (3).

y¼ bþ
Xr

i ¼ 1

oifiðf̂ Þ ð3Þ

4.3.3. Cross validation

A k-fold cross validation, sometimes called rotation estimation,
is applied in this stage. The technique separates the entire data set
into k mutually exclusive subsets (folds) [45]. The folds are of
approximately equal size. The inputs are trained on the selected
training data and tested on the test data selection. The cross
validation estimation of accuracy is the overall number of correct
classifications divided by the number of instances in the data set.
The accuracy estimate is the average accuracy for k mutually
exclusive subsets.

Kohavi has shown through experimental results on artificial
data and theoretical results in restricted settings, that selecting a
good classifier from a set of classification model, 10-fold cross
validation may be better than the more expensive leave-one-out
cross validation [45]. In this paper, this procedure will be adopted
and carried out for all experimental results.
Fig. 9. A neural network model with Gaussian kernels.
5. Experimental results

The clean image data set used in the experiment is down-
loaded from [37], which contains 10,000 512�512 images. Two
hundred images are randomly selected, converted from PGM
uncompressed image file format into JPEG file format with a
compression ratio of 75 for a fair comparison. Based on the
analysis described in Section 3, it is apparent that among seven
stego message files as the file size increases more alteration
whether on JPEG coefficients or image pixel values is made. One
can then assume that more changes lead to easier detection.
Hence, in the demonstration, three sizes of stego message text
files smaller than and equal to 1 KB are exploited, i.e., 0.2 KB,
0.3 KB, and 1 KB, for creating stego images. Additionally, as can be
seen in Section 3, JPEG-JSteg v1 and JPEG-JSteg v4 result in higher
error measurements, as well as Model-based v1.2 makes larger
alteration based on coefficient location. Hence, three JPEG stego
methods, F5 [21], Outguess v0.2 [25], and Steghide v0.5.1 [26], are
demonstrated in this section due to harder detection intuitively.

Using 10-fold cross validation, Tables 1–3 show the classifica-
tion accuracies of distinguishing the clean and three JPEG stego
methods with the presented PR system. Results for comparison
show the classification accuracies when a number of features, 5,
10, 15, or 20, is selected after ranking. Compared to using
individual feature sets [13,15,38], a combination of these features
tends to corporate the separation between classes and a selected
subset of features are selected, extracted, and standardized in
order to reduce the problem dimension as well as integrate the
classification strength of each individual feature set. Feature
combination shows better classification performance compared
to other methods.
Table 2
Classification accuracy (%) using the PR system for Outguess v0.2.

Features File size

(KB)

Fridrich [13]

(%)

Shi [15]

(%)

Chen [38]

(%)

Combination

(%)

5 0.2 38.8 43.8 48.7 55.6

0.3 59.5 50.6 47.0 51.8

1.0 62.9 59.0 58.1 69.6

10 0.2 54.2 50.8 40.4 52.4

0.3 72.0 58.0 54.9 63.0

1.0 84.3 69.4 75.1 80.3

15 0.2 63.6 57.6 63.8 58.8

0.3 69.7 65.3 66.9 72.4

1.0 89.2 83.1 84.1 92.7

20 0.2 74.5 61.8 66.3 67.9

0.3 81.3 63.5 77.1 81.9

1.0 95.5 95.0 94.5 97.4



Table 4
Classification accuracy (%) using the PR system.

Stego methods File size (KB) CA7std.(%) Number of selected features

F5 0.2 66.077.7 40

0.3 72.6711.0 29

1.0 93.774.2 29

Outguess v0.2 0.2 93.675.73 56

0.3 95.473.33 57

1.0 99.571.44 56

Steghide v0.5.1 0.2 93.676.35 36

0.3 93.575.12 36

1.0 94.476.74 37

Table 3
Classification accuracy (%) using the PR system for Steghide v0.5.1.

Features File size

(KB)

Fridrich [13]

(%)

Shi [15]

(%)

Chen [38]

(%)

Combination

(%)

5 0.2 52.1 53.8 56.1 53.8

0.3 50.6 48.5 48.1 48.5

1.0 58.5 63.5 45.8 63.5

10 0.2 55.3 59.3 58.0 59.3

0.3 60.6 63.0 58.0 63.0

1.0 85.6 68.9 73.6 70.2

15 0.2 79.7 72.3 68.8 72.3

0.3 77.8 64.7 63.0 64.7

1.0 88.7 81.6 71.1 80.7

20 0.2 75.5 77.5 67.9 82.0

0.3 75.9 76.1 77.5 79.5

1.0 93.0 81.7 89.1 88.0
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With the entire feature combination and preprocessing system
for JPEG steganography detection, Table 4 illustrates the highest
classification accuracies7standard deviations obtained along
with the number of features over all the 370 is selected. The
system performs over 90% of classification accuracies on both
Outguess v0.2 and Steghide v0.5.1 stego methods, even when the
small amount of information is embedded. For F5, the system
does not perform as good as the others when a 0.2 KB and a 0.3 KB
stego message file is incorporated within the clean images. This
indicates that the three feature sets for combination during the
feature generation stage are not strong enough for classifying the
clean and F5 stego images. Other techniques may be incorporated
into the system for improvement.
6. Conclusion and discussion

This paper has presented a pattern recognition system for JPEG
steganography detection, including feature generation, feature rank-
ing and selection, feature extraction, and neural network classifica-
tion. Six JPEG stego methods have been discussed and analyzed in
Section 3. With these information, three feature sets are combined
in the first stage. The advantage of exploiting existing feature
generation methods is to decrease the cost of developing new
algorithms. Feature ranking and selection then assist to reduce the
problem space by determining the class separability of features.
Feature extraction mutually excludes the selected raw features to
avoid information redundancies. These multivariate preprocessing
stages improve the performance on classifying the clean and the
stego images. The results in Section 5 show that the PR system
strengthens the capability of distinguishing the clean and F5,
Outguess v0.2, and Steghide v0.5.1 stego images respectively even
when a small amount of information is embedded. Apparently,
other current and/or new techniques may be incorporated within
the system to have better performance as well as classify various
stego methods and anomalies.
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